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Abstract
We consider the massive Klein–Gordon field on the half line with and without
a Robin boundary potential. The field is coupled at the boundary to a harmonic
oscillator. We solve the system classically and observe the existence of classical
boundary bound states in some regions of the parameter space. The system is
then quantized, the quantum reflection matrix and reflection cross section are
calculated. Resonances and Ramsauer–Townsend effects are observed in the
cross section. The pole structure of the reflection matrix is discussed.

PACS numbers: 11.10.−z, 03.65.Pm

The study of quantum fields with boundaries has been the subject of much work in recent
years. There have been two main methods used to study such systems; integrable boundary
field theory (see, for example, [1, 2]) and boundary perturbation theory (see [3], and references
there in). Both approaches have focused on situations where the boundary is a non-dynamic
object that does not contain its own internal degrees of freedom. Recently some studies
have been conducted on the coupling of both classical and quantum fields to boundaries,
or impurities, containing additional degrees of freedom, for instance, dynamic boundary
conditions have been studied for the integrable sine-Gordon [4–7], supersymmetric sine-
Gordon [8], free fermion fields [9] and several authors have studied the coupling of the
massless Klein–Gordon field to oscillators, e.g. [10–13]. These models can be used in the
study of such physical systems as excited atoms in cavities and quantum wires containing
impurities. Boundary degrees of freedom are also of interest in the study of brane–bulk
interactions in braneworld universes, see, for example, [14].

In this paper we consider another system consisting of a field with a dynamic boundary.
This ‘toy model’ consists of a massive Klein–Gordon field in 1+1 dimensions restricted to
the left half line by a boundary. The field is linearly coupled to a harmonic oscillator at the
boundary thus introducing the additional degrees of freedom. Although this model is entirely
linear, and may therefore appear trivial on first inspection, we will see it possesses several
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interesting, non-obvious features. The full analysis of these features, which we are able to
undertake due to its linear nature, will help in the interpretation of similar effects in other
non-integrable models and in systems where perturbative methods cannot be applied.

In section 1 we review previous results for the massive Klein–Gordon field with the Robin
boundary condition. In section 2 we consider the massive Klein–Gordon field on the halfline
coupled to a harmonic oscillator at the boundary with a Robin boundary potential. The system
is solved in the classical regime and boundary bound states are observed in some regions of
the parameter space. We show that the classical solutions of the system can be decomposed
into independent modes of oscillation. We observe that the existence of boundary bound
states combined with the requirement that the Hamiltonian be bounded below restricts the
possible values of the parameters of the theory. We then quantize the field directly from the
classical solutions expressed as a superposition of the independent modes and find the quantum
reflection matrices of the systems from the two point function of the field. From the reflection
matrix we calculate the reflection cross section, and resonances and Ramsauer–Townsend
effects are observed for some ranges of the parameter spaces. We discuss the pole structure
of the quantum reflection matrices. At the end of section 2 we consider the special case when
the Robin boundary potential is absent. Section 3 contains a discussion on the main results of
this paper, and possible directions for future work in the area.

1. The massive Klein–Gordon field with a Robin boundary

In this section we consider an example of an exactly solvable boundary field theory, the
massive Klein–Gordon field on the left half line with a Robin boundary potential. This system
has been studied previously, see, for example, [3, 15].

1.1. Classical system

The Hamiltonian for this system is given by

H =
∫ 0

−∞

(
1

2
π(x, t)2 +

1

2
(∂xφ(x, t))2 +

1

2
m2φ(x, t)2

)
dx +

1

2
λφ(0, t)2, (1)

where φ(x, t) and π(x, t) are the field and its conjugate momentum which have the Poisson
bracket relations {φ(x, t), π(y, t)} = δ(x−y). The boundary coupling parameter λ is assumed
to be real.

From (1) we find Hamilton’s equations for the system1,

∂tφ(x, t) = {φ(x, t),H } = π(x, t), (2)

∂tπ(x, t) = {π(x, t),H } = ∂2
xφ(x, t) − m2φ(x, t) − δ(x)(∂xφ(0, t) + λφ(0, t)). (3)

From (2) and (3) we find the Robin boundary condition by requiring that π(x, t) be continuous
at the origin,

∂xφ(0, t) = −λφ(0, t). (4)

From Hamilton’s equations (2) and (3) and the boundary condition (4) we recover the usual
equation of motion for the massive Klein–Gordon field,

∂2
t φ(x, t) = ∂2

xφ(x, t) − m2φ(x, t). (5)

1 Here and throughout this paper the notation ∂xφ(0, t) should be read as the derivative with respect to x of φ(x, t)

evaluated at x = 0, i.e. a shortened notation for ∂xφ(x, t)|x=0.
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The equation of motion (5) and boundary condition (4) are satisfied by the ‘bulk’ solutions,

φ(x, t) =
∫ ∞

0

(
cos(ρx) − λ

ρ
sin(ρx)

) (
a(ρ) cos(ωρt) +

b(ρ)

ωρ

sin(ωρt)

)
dρ, (6)

where a(ρ) and b(ρ) are real functions of ρ and ωρ =
√

m2 + ρ2.
As well as the ‘bulk’ solutions there can exist square integrable boundary bound state

solutions. Such solutions can be found by allowing the momentum, ρ, of the bulk solutions,
given in this case by (6), to take imaginary values, ρ = i�. Because the bulk solutions satisfy
the boundary condition (4) and the equation of motion of the bulk field (5) the imaginary
momentum solutions will also satisfy these equations. However, such solutions will, generally,
cause the field to diverge as x → −∞ and so must be discarded2. However, for special values
of � the divergence of the field arising from terms proportional to cosh(�x) and that arising
from terms proportional to sinh(�x) cancel out on the left half line. At such values of � there
exists a valid boundary bound state. Such a valid boundary bound state exists for the Robin
boundary at � = −λ provided λ is negative3. The boundary bound state solution is then

φ(x, t) = e�x

(
a� cos(ω�t) +

b�

ω�

sin(ω�t)

)
, (7)

where a� and b� are real amplitudes and ω� =
√

m2 − �2. Note that there is only a boundary
bound state for negative values of λ, i.e., when the contribution of the boundary term to
the Hamiltonian (1) is negative. Such boundaries are called attractive, those for which the
contribution of the boundary term to the Hamiltonian is positive are called repulsive boundaries.
Repulsive boundaries cannot support boundary bound states of this form. Also note that when
�2 > m2 the value of ω� becomes imaginary and the boundary bound state solution diverges
as t → ±∞. The most general solution for the Robin boundary is formed by adding the bulk
solutions to the boundary bound state solution, if one exists.

We can now try substituting these solutions into the Hamiltonian (1). Let us first assume
that λ is positive, i.e. the boundary is repulsive and there exists no boundary bound state.
Taking each term of the Hamiltonian in turn at t = 0, substituting the expressions for the bulk
solutions (6) we find that

H =
∫ ∞

0

1

2
b̃(ρ)2 +

1

2
ω2

ρã(ρ)2 dρ, (8)

where

ã(ρ) :=
√

π

2
a(ρ)

(
1 +

λ2

ρ2

)1/2

, (9)

b̃(ρ) :=
√

π

2
b(ρ)

(
1 +

λ2

ρ2

)1/2

. (10)

When λ is negative we must also include the boundary bound state solution when we
are substituting into the Hamiltonian (1). This results in an additional term appearing in (8)
corresponding to the energy contribution of the additional mode. The Hamiltonian for the
attractive Robin boundary is

H =
∫ ∞

0

1

2
b̃(ρ)2 +

1

2
ω2

ρã(ρ)2 dρ +
1

2
b̃2

� +
1

2
ω2

�ã
2
�, (11)

2 The field is required to be bounded over its domain, thus solutions which diverge on the left half line must be
discarded.
3 If λ is positive there is no solution which decays on the left half line instead there is a solution which exponentially
grows as x → −∞ which must be rejected.
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where ã(ρ) and b̃(ρ) are given by (9) and (10) and

ã� := a�

(2|λ|)1/2
, b̃� := b�

(2|λ|)1/2
.

Note that if λ2 > m2 then ω2
� is negative. This would mean that the Hamiltonian (11) would

not be bounded below and thus be unphysical. It is therefore a requirement on the parameters
of the theory that λ2 � m2 for the attractive Robin boundary, as the repulsive boundary has
no such bound state there does not exist an equivalent condition, the Hamiltonian is always
bounded below.

1.2. Quantum system

As both the Hamiltonian for the repulsive (8) and the attractive Robin boundaries (11) are now
written as an infinite sum of harmonic oscillators we can quantize the field in the canonical
fashion. For each mode we have a creation and annihilation operator,

α†(ρ) :=
√

ωρ

2

(
ã(ρ) − i

b̃(ρ)

ωρ

)
, α(ρ) :=

√
ωρ

2

(
ã(ρ) + i

b̃(ρ)

ωρ

)
,

α†
� :=

√
ω�

2

(
ã� − i

b̃�

ω�

)
, α� :=

√
ω�

2

(
ã� + i

b̃�

ω�

)
.

The ‘bulk’ creation operators, α†(ρ), act on the vacuum to produce bulk particles of the field.
These particles are located far to the left of the boundary at t = −∞ with momentum p = ρ

they propagate to the boundary from which they reflect. At t = ∞ these particles are once
again located far to the left of the boundary and have momentum p = −ρ. The creation
operator associated with the boundary bound state, α†

�, acts on the vacuum to create a particle
of the field with energy lower than that of a stationary bulk particle, this particle is trapped
close to the boundary at all times.

The one-particle quantum reflection matrix, or R-matrix, for the massive Klein–Gordon
field with a linear boundary can be found directly from the two point function of the quantized
field,

〈0|φ(x2, t2)φ(x1, t1)|0〉 =
∫ ∞

−∞

1

4πωp

e−ip(x2−x1) e−iωp(t2−t1) dp

+
∫ ∞

−∞

1

4πωp

R(p) e−ip(x2+x1) e−iωp(t2−t1) dp

+ boundary bound state contributions. (12)

The first integral on the right-hand side of (12) is the standard two point function of the Klein–
Gordon field. This corresponds to a particle propagating between the space time points (x1, t1)

and (x2, t2). The second integral corresponds to a particle propagating between the same two
points via the boundary where it is reflected and picks up the momentum-dependent amplitude
R(p), which is equivalent to the R-matrix found using any other commonly used definitions,
see [16]. The third term on the right-hand side of (12) arises from any boundary bound states
of the system, such contributions will fall off to zero as x1 → −∞ and x2 → −∞ due to the
localization of the boundary bound state particles close to the boundary.

Using these creation and annihilation operators, the definition of the quantum reflection
matrix (12) and the expressions for the general bulk solutions of the field (6) it is simple to
calculate the R-matrix for the Robin boundary to be

R(p) = p − iλ

p + iλ
. (13)



Klein–Gordon field with boundary oscillator 7403

p p
(B)(A)

Figure 1. The analytic structure of the quantum reflection matrix for the Robin boundary for
(A) λ < 0 and (B) λ > 0.

Let us consider the analytic structure of (13). There is always a single pole located at p = −iλ.
When λ is negative this pole appears in the upper complex half plane as shown in figure 1(A)
where the black circle indicates the pole and the white circle indicates a node. The pole
occurs at the same value of imaginary momentum for which we have observed a classical
boundary bound state. The interpretation of this pole is clear, it corresponds to the existence
of a quantum boundary bound state which is equivalent to the classical boundary bound state.
However, when λ is positive, and the pole appears in the lower complex half plane as shown
in figure 1(B), there is no classical boundary state to which the pole can correspond and the
pole does not correspond to a quantum state of the system either.

2. Coupling the massive Klein–Gordon field to a boundary oscillator in the
presence of a Robin potential

In this section we consider the massive Klein–Gordon field in 1+1 dimensions restricted to
the left half line with a Robin boundary potential. In addition the field is linearly coupled to a
harmonic oscillator at the boundary thus introducing an additional degrees of freedom. This
preserves the linear, and thus exactly solvable, nature of the theory but introduces new and
interesting features into the reflection cross section.

2.1. Classical system

The Hamiltonian for this system is

H =
∫ 0

−∞

(
1

2
π(x, t)2 +

1

2
(∂xφ(x, t))2 +

1

2
m2φ(x, t)2

)
dx

+
1

2
λφ(0, t)2 + βφ(0, t)q(t) +

1

2
µ2q(t)2 +

1

2
p(t)2, (14)

where π(x, t) is the conjugate momentum to the field φ(x, t), and p(t) is the conjugate
momentum to the oscillator q(t). These have the usual equal time Poisson bracket relations,
{φ(x, t), π(y, t)} = δ(x − y), {q(t), p(t)} = 1, all other brackets are zero. The parameters of
the theory are the mass of the field, m, the Robin boundary coupling parameter, λ, the boundary
oscillator coupling parameter, β and the natural frequency of the boundary oscillator, µ. In
natural units4 these parameters have dimensions [m] = [µ] = [λ] = [M], [β] = [M3/2] and
for the oscillator [q(t)] = [M−1/2] and [p(t)] = [M1/2]. The parameters m, µ, λ and β are
assumed to be real and m and µ are taken to be positive.

4 Setting c = h̄ = 1, gives relations between the dimensions, [M] = [L−1] = [T −1].



7404 A George

Hamilton’s equations for the field and oscillator are

∂tφ(x, t) = {φ(x, t),H } = π(x, t), (15)

∂tπ(x, t) = {π(x, t),H } = ∂2
xφ(x, t) − m2φ(x, t) − δ(x)(∂xφ(0, t) + λφ(0, t) + βq(t)),

(16)

∂tq(t) = {q(t),H } = p(t), (17)

∂tp(t) = {p(t),H } = −βφ(0, t) − µ2q(t). (18)

From (16) we find the boundary condition necessary for π(x, t) to be continuous to be

∂xφ(0, t) = −λφ(0, t) − βq(t). (19)

Combining the boundary condition (19) and Hamilton’s equations (15) and (16) we recover
the equation of motion for the Klein–Gordon field

∂2
t φ(x, t) = ∂2

xφ(x, t) − m2φ(x, t). (20)

Similarly we find the equation of motion for the boundary oscillator from Hamilton’s equations
(17) and (18) to be

∂2
t q(t) = −βφ(0, t) − µ2q(t). (21)

The equations of motion (20) and (21) and boundary condition (19) are satisfied by the
bulk solutions,

φ(x, t) =
∫ ∞

0
(ρ(ρ2 − µ2 + m2) cos(ρx) − (λ(ρ2 − µ2 + m2) + β2) sin(ρx))

× (a(ρ) cos(ωρt) + b(ρ) sin(ωρt)), (22)

q(t) =
∫ ∞

0
βρ(a(ρ) cos(ωρt) + b(ρ) sin(ωρt)) dρ, (23)

where ωρ =
√

m2 + ρ2 and a(ρ) and b(ρ) are real functions of ρ.
These solutions have several interesting features. For large λ or β the solutions for

the field become equivalent, after a rescaling of a(ρ) and b(ρ), to solutions for the Dirichlet
boundary condition and for small λ and β the field solutions become the same as for a Neumann
boundary. These qualitative features of the bulk solutions are shared by the solutions for the
Robin boundary condition discussed in section 1, this behaviour is said to èxtrapolate between
the Dirichlet and Neumann boundary conditions’. The solutions for the dynamic boundary
(22) and (23) contain additional interesting features. In the region of the parameter space
where µ > m there exists a value of ρ, ρ =

√
µ2 − m2 at which for any value of β and

λ the solution, for this one mode, becomes proportional to sin(ρx), this can be interpreted
as a resonance effect, at this value of ρ the field is oscillating with frequency ωρ = µ, the
natural frequency of the boundary oscillator. A second feature in the solutions not previously
observed for just the Robin boundary potential is that when λρ2 = λ(µ2 −m2)−β2 the single
mode solution becomes proportional to cos(ρx). In the next section we will return to these
features when we consider the reflection cross section of this boundary.

In addition to the spatially oscillating ‘bulk’ solutions there exist square integrable
‘boundary bound state’ solutions found from the bulk solutions by allowing the parameter
ρ to take imaginary values ρ = i� and requiring that the divergence of the field on the left
half line arising from the terms proportional to cosh(�x) and sinh(�x) cancel. These solutions
have the form
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β2

λ

I = 0
J+ = 0

J− = 0

(a)

(b)

(d)

(f)

(c)

(e)

µ > m

β2

λ

µ < m

I = 0

J+ = 0

(g)

(h)

(i)

(j)

(k)
(k)

(A)

(B)

Figure 2. The various regions of the parameter space of the dynamic boundary with Robin potential
theory for (A) µ > m and (B) µ < m.

φ(x, t) = e�x(a� cos(ω�t) + b� sin(ω�t)), (24)

q(t) = −� + λ

β
(a� cos(ω�t) + b� sin(ω�t)), (25)

where ω� =
√

m2 − �2, a� and b� are real amplitudes and � is a positive real solution of

�3 + λ�2 + (µ2 − m2)� + λ(µ2 − m2) − β2 = 0. (26)

We can split the parameter space of the theory into regions, using the planes

• µ2 − m2=0,
• λ = 0,
• I = λ(µ2 − m2) − β2 = 0,
• J± = 2

3λ(µ2 − m2) + 2
27λ3 ± 2

27 (λ2 − 3(µ2 − m2))3/2 − β2 = 0.

The value of I is the value of the cubic �3 + λ�2 + (µ2 − m2)� + λ(µ2 − m2) − β2 at � = 0, J+

is the value of the cubic at the local maximum of the function and J− is the value of the cubic
at the local minimum. If λ2 < 3(µ2 − m2) there are no stationary points and J± take complex
values. When this occurs we use the real part of J± = 0 as the boundary between regions.
Figure 2 shows how the parameter space of the theory is divided up by these planes.
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It is simple to find how many real solutions of (26) exist in each of these regions. For
µ > m there is a single positive real solution if I < 0 which corresponds to regions (a), (b)
and (c) in figure 2(A), if J+ < 0, i.e. region (c), there are also two negative real solutions
to (26). If µ > m and I > 0 then there are no positive real solutions, but there is a single
real negative solution in regions (d) and (f ) and three negative solutions in region (e). When
µ < m there is a single positive solution to (26) if I < 0, i.e. in regions (g), (h), ( j) and (k) of
figure 2(B). In regions (h) and (k) there are also two negative real solutions. When µ < m and
I > 0, i.e. in region (i) there are two positive real solutions and one negative real solution. As
only positive real solutions of (26) correspond to classical boundary bound state solutions this
means there exist one such solution in regions (a), (b), (c), (g), (h), ( j) and (k). There are no
boundary bound states in regions (d), (e) and (f ) and there are two classical boundary bound
state solutions in region (i).

For (24) and (25) to describe time oscillatory states � must be less than m. Using (26) it
is possible to express this requirement as an inequality between the parameters of the model,

β2

µ2
− λ � m. (27)

If this condition is satisfied the boundary bound states of the system are time oscillatory,
otherwise they are solutions in which the field diverges as t → ±∞.

Classical boundary bound state solutions for the Klein–Gordon field have previously been
observed for the Robin boundary, as discussed in section 1, where the equivalent condition
to (47) for the bound state to be oscillatory is −λ � m. It is worth noting that the bound state
only exists for the attractive Robin boundary, i.e. λ < 0. If λ > 0 then the Robin boundary is
repulsive and no bound state exists.

We will now show that the solutions (22)–(25) can be written as a superposition of
orthogonal-independent modes of oscillation. Let us define

ã(ρ) :=
√

π

2
a(ρ)(ρ2(ρ2 − µ2 + m2)2 + (λ(ρ2 − µ2 + m2) + β2)2)1/2, (28)

b̃(ρ) :=
√

π

2
b(ρ)ωρ(ρ

2(ρ2 − µ2 + m2)2 + (λ(ρ2 − µ2 + m2) + β2)2)1/2, (29)

ã� := a�

(
β2 + 2ρ(ρ + λ)2

2β2ρ

)1/2

, (30)

b̃� := b�ω�

(
β2 + 2ρ(ρ + λ)2

2β2ρ

)1/2

, (31)

ψ(ρ, x) := ρ(ρ2 − µ2 + m2) cos(ρx) − (λ(ρ2 − µ2 + m2 + β2) sin(ρx)√
π
2 (ρ2(ρ2 − µ2 + m2)2 + (λ(ρ2 − µ2 + m2) + β2)2)1/2

, (32)

χ(ρ) := βρ√
π
2 ((ρ2(ρ2 − µ2 + m2)2 + (λ(ρ2 − µ2 + m2) + β2)2)1/2

, (33)

ψ�(x) := e�x

(
2β2ρ

β2 + 2ρ(ρ + λ)2

)1/2

, (34)

χ� := −ρ + λ

β

(
2β2ρ

β2 + 2ρ(ρ + λ)2

)1/2

. (35)
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We can now write the general solutions in terms of the definitions (28)–(35) as

φ(x, t) =
∫ ∞

0

(
ã(ρ)ψ(ρ, x) cos(ωρt) +

b̃(ρ)

ωρ

ψ(ρ, x) sin(ωρt)

)
dρ

+
∑

�

(
ã�ψ�(x) cos(ω�t) +

b̃�

ω�

ψ�(x) sin(ω�t)

)
, (36)

q(t) =
∫ ∞

0

(
ã(ρ)χ(ρ) cos(ωρt) +

b̃(ρ)

ωρ

χ(ρ) sin(ωρt)

)
dρ

+
∑

�

(
ã�χ� cos(ω�t) +

b̃�

ω�

χ� sin(ω�t)

)
. (37)

The sum in (36) and (37) runs over all positive real roots of (26). The functions (32)–(35)
form an orthonormal set over the half line plus the oscillator,∫ ∞

0
ψ(ρ1, x)ψ(ρ2, x) dx + χ(ρ1)χ(ρ2) = δ(ρ1 − ρ2), (38)

∫ ∞

0
ψ�(x)ψ(ρ, x) dx + χ�χ(ρ) = 0, (39)

∫ ∞

0
ψ�1(x)ψ�2(x) dx + χ�1χ�2 = δ�1�2 . (40)

Relation (38) holds as ρ is always positive, (39) requires that � is a root of (26) and (40) uses
the relations between roots of a cubic equation5. By substituting the general solutions (36)
and (37) into the Hamiltonian (14) and applying the othoganality relations (38)–(40) we
can rewrite the Hamiltonian as an infinite sum of independent harmonic oscillators each
corresponding to one mode of oscillation of the field6,

H = 1

2

∫ ∞

0
b̃(ρ)2 + ω2

ρã(ρ)2 dρ +
1

2

∑
�

b̃2
� + ω2

�ã
2
�. (41)

Note that the Hamiltonian (41) is bounded below only if ω� is real, i.e. if all the boundary
bound state modes are oscillatory, which occurs only when (27) is satisfied. Thus we must
require that the condition (27) be satisfied to have a physical system.

2.2. Quantum system

By using the definitions (28)–(35) we have described the general classical solutions for the field
as the linear superposition of independent modes of oscillation. The Hamiltonian in this basis
can be written as a sum over an infinite number of harmonic oscillators each corresponding to
one of the modes of oscillation (41). It is now simple to quantize the system, by analogy to
the quantization of the unbounded field we can define creation and annihilation operators,

α(ρ) :=
√

ωρ

2

(
ã(ρ) − i

b̃(ρ)

ωρ

)
, α� :=

√
ω�

2

(
ã� − i

b̃�

ω�

)
,

α†(ρ) :=
√

ωρ

2

(
ã(ρ) + i

b̃(ρ)

ωρ

)
, α†

� :=
√

ω�

2

(
ã� + i

b̃�

ω�

)
.

5 Let the roots of the cubic z3 + c2z
2 + c1z + c0 be z1, z2 and z3. These roots satisfy the relations z1z2z3 =

−c0, z1z2 + z1z3 + z2z3 = c1 and z1 + z2 + z3 = −c2.
6 That is the integral over all bulk modes plus the sum over the finite number of boundstate modes.
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Here there is one pair of creation annihilation operators for each allowed boundary bound state.
The operators have the usual commutation relations for creation and annihilation operators,
[α(ρ1), α

†(ρ2)] = δ(ρ1 − ρ2),
[
α�, α

†
�

] = 1, and
[
α(ρ), α†

�

] = [α�, α
†(ρ)] = 0.

Using these operators we can construct a Fock space, let the vacuum, |0〉, be the state
which vanishes when acted on by any of the annihilation operators, α(ρ)|0〉 = 0, α�|0〉 = 0.
The one-particle ‘bulk’ states are created by the action of α†(ρ) on the vacuum, α†(ρ)|0〉 = |ρ〉,
and one particle boundary states are created by the action of α†

� on the vacuum, α†
�|0〉 = |�〉.

The one-particle bulk states, |ρ〉, represent a particle of mass m that at t = −∞ is located
far to the left of the boundary and is travelling with momentum p = ρ towards the boundary.
At time t = ∞ this particle is again located far to the left but is travelling away from the
boundary with momentum p = −ρ. At some finite time the particle has approached and
reflected from the boundary. Boundary states, |�〉, represent particles which are located close
to the boundary at all times. Annihilation operators act on the one-particle states to return
the vacuum or zero, α(ρ1)|ρ2〉 = δ(ρ1 − ρ2)|0〉, α�1 |�2〉 = δ�1�2 |0〉. Multi-particle states can
be constructed from the action of several creation operators on the vacuum. We can define the
number operator for both the bulk particle states, N(ρ) := α†(ρ)α(ρ), and for the boundary
states, N� := α†

�α�, from which we can construct the renormalized Hamiltonian,

Ĥ :=
∫ ∞

0
ωρN(ρ) dρ +

∑
�

ω�N�. (42)

This is equivalent to the classical Hamiltonian (41) up to a constant infinite term. From
equation (42) and the definition of ωρ we see that the renormalized Hamiltonian is Hermitian
if and only if ω� is real. This is the same requirement as that for the classical boundary bound
states to be oscillatory in time. It has already been shown that this condition is equivalent to
equation (27). Thus provided that the condition (27) between the parameters of the model
holds the renormalized Hamiltonian (42) will be a Hermitian operator. If (47) does not hold
the theory has an unstable vacuum and cannot be quantized.

From the general solution for the field (36) and the definition (12) we find the reflection
matrix to be

R(p) = p(p2 − µ2 + m2) − i(λ(p2 − µ2 + m2) + β2)

p(p2 − µ2 + m2) + i(λ(p2 − µ2 + m2) + β2)
. (43)

Note that R(p) is unitary R(p)∗R(p) = 1 and that as the parameter p is the momentum of
incoming particles and as the boundary defines the right most limit of the field all incoming
particles will have positive momentum, thus it is sufficient for us to consider just these values
of p.

The reflection matrix (43) has three poles corresponding to the three complex roots of
(26). These poles either occur at positive, purely imaginary, values of momentum (p = i�)

in which case they correspond to the bound state of the system, or they occur at values of
momentum in the lower half complex plane. To help interpret these poles we define the total
reflection cross section by analogy with the optical theorem for bulk scattering,

σtot(ρ) ∝ 1

2
�(Q(ρ)) = (λ(ρ2 − µ2 + m2) + β2)2

ρ2(ρ2 − µ2 + m2)2 + (λ(ρ2 − µ2 + m2) + β2)2
, (44)

where Q(ρ) = (−i)(R(ρ) − 1) and �(Q(ρ)) indicates that we are taking the imaginary part
of Q(ρ). The total reflection cross section σtot(ρ), measures the probability that, during the
reflection process, the reflecting particle in state |ρ〉 is scattered into some intermediate state,
|ς〉, which then decays back into the original state7. Figure 3(A) shows the shape of σtot for

7 The total cross section σtot here does not have a direct clear interpretation due to quantum mechanical interference
between scattering and non-scattering terms, we pursue this interpretation through analogy with the bulk case.
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Figure 3. The total reflection cross sections of (A) the dynamic boundary with m = 4, µ = 5,

β = 2, λ = 0 and (B) the repulsive Robin boundary with λ = 1
2 .

the dynamic boundary in the region of the parameter space where µ > m, for the special case
when λ = 0. For comparison figure 3(B) shows the shape of the total reflection cross section
of the Robin boundary. Both reflection cross sections exhibit a background effect where, for
low momentum particles, the cross section increases arising from the attraction or repulsion
of the boundary to the scattering bulk particles.

The reflection cross section (44) has two other important features, the first is a resonance
peak around ρ =

√
µ2 − m2 where the cross section is large the second is a minimum where

the cross section falls to zero at λρ2 = λ(µ2 − m2) − β2. These two features correspond to
when the classical solutions are proportional to sin(ρx) and cos(ρx), respectively. Note that
figure 3(A) also exhibits a resonance peak but no minimum, we will discuss this special case in
a later section. The resonance is only observable in the reflection cross section when µ > m

as ρ is positive and real for the scattering particles. Similarly the minimum will only appear
in the regions of the parameter space where µ > m and λ < 0, i.e. region (a) of figure 2(A), or
λ > 0 and β2 < λ(µ2 − m2), regions (d), (e) and (f ) of figure 2(A). For µ < m the minimum
will appear if λ < 0 and β2 > λ(µ2 − m2), regions (g) and (h) of figure 2(B). Figure 4 shows
the shape of the reflection cross section in the different regions of the parameter space. Note
the existence of the resonance peak in figures 4(A), (B) and (C) and the zero cross section
in 4(A), after the resonance, 4(B), before the resonance, and in 4(E).

The shape of the cross section close to a narrow resonance peak is well approximated by
the Breit–Wigner formula [18, 21]

σtot(ρ) ∝ (
(ωρ − ω0)

2 + 1
4�2

)−1
, (45)

where ωρ is the energy of the reflecting particle, ω0 is the mass of the resonance particle and
� is the decay rate of the resonance. By comparing (45) and (44) close to the resonance peak
we find that the energy of the resonance particle is equal to µ, the natural frequency of the
boundary oscillator. This suggests a new interpretation for the resonance peak, if we view
the boundary terms in the Hamiltonian, (14), as describing a (0+1)-dimensional field rather
than a mechanical system then particles of this field will have mass µ. Such particles would
be strongly confined to the boundary as they are only able to propagate in the domain of the
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Figure 4. The total reflection cross section for the boundary oscillator with Robin potential
for (A) λ = −2, µ = 13, m = 12, β = 4, (B) λ = 2, µ = 13, m = 12, β = 4,
(C) λ = 2, µ = 13, m = 12, β = 8, (D) λ = −2, µ = 12, m = 13, β = 4,
(E) λ = −2, µ = 12, m = 13, β = 8, (F) λ = 2, µ = 12, m = 13, β = 4.
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p

Figure 5. The analytic structure of the reflection matrix of the dynamic boundary with Robin
potential for µ > m and λ < 0 (region (a)).

boundary field. The resonance peak corresponds to a bulk state, |ρ〉 with energy close to
the mass, µ, of the resonance state, |ς〉, approaching the boundary and, through the linear
coupling term, βφ(0, t)q(t), creates a boundary particle in state |ς〉 which remains on the
boundary until it decays back into the bulk state |ρ〉.

From (45) and (44) it is also possible to calculate an approximate value for � which will
be valid when the resonance is narrow,

� ≈ β2

µ
√

µ2 − m2
. (46)

As µ approaches m the shape of the resonance peak widens corresponding to an increasing
decay rate for the boundary particle. The Breit–Wigner formula (45) is only valid for narrow
peaks so (46) ceases to be a good approximation.

Resonances associated with the boundary have been previously observed in [1, 14,
19, 20].

The zero reflection cross section arises from the combined effects of the boundary
oscillator and the Robin boundary potential. A similar effect is observed in quantum
mechanical scattering from a square well potential, see, for example, [22, 23]. Such minima
in cross sections are often associated with the Ramsauer–Townsend effect where scattering
of electrons from noble gas atoms show a minimum for certain energies of scattering
electrons [24].

We will now turn our attention to the pole structure of the quantum reflection matrix (43),
taking each of the regions of the parameter space in turn. In each case the reflection matrix
has three poles corresponding to the three complex solutions of the cubic (26). First let us
consider the region where µ > m and λ < 0, region (a) of figure 2(A). Figure 5 shows the
analytic structure of the reflection matrix in this region, black circles denote poles and white
circles denote nodes. In this case there in one pole on the positive imaginary axis and two in
the lower complex half plane.

Earlier we observed a single classical boundary bound state solution when µ > m provided
β2 > λ(µ2 − m2). As β2 and (µ2 − m2) are positive and λ is negative there exists a boundary
bound state in this region which corresponds to the pole on the positive imaginary axis in
figure 5. Earlier in this section we observed that the reflection cross section in this region
of the parameter space exhibits a resonance peak, as illustrated in figure 4(A). The unstable
resonance state associated with this feature can be identified with the pole in the lower right
quadrant of figure 5. The third pole in the lower left quadrant produces a resonance feature in
the cross section at ρ = −

√
µ2 − m2 however, as mentioned before, ρ is a positive parameter

so this resonance is never observed.
It is illuminating to consider how the poles behave in the weak coupling limit, i.e. as

β → 0 and λ → 0 simultaneously. In this case the pole corresponding to the bound state
approaches ρ = 0 along the positive imaginary axis. This indicates that the state arises
from the stationary bulk particle state, the same behaviour as that of the bound state of the
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p p p
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Figure 6. The analytic structure of the reflection matrix of the dynamic boundary with Robin
potential for µ > m, λ > 0 and (A) β2 < J− (region (f )) (B) J− < β2 < J+ < λ(µ2 − m2), or
J− < β2 < λ(µ2 − m2) < J+ (region (e)), (C) J+ < β2 < λ(µ2 − m2) (region (d)).

attractive Robin boundary. Such states can be interpreted as particles of the field with energy
less than their mass, m. These particles can only exist close to an attractive boundary. Thus
the boundary in this region of the parameter space is attractive. The poles corresponding to
the resonance states of the system in the weak coupling limit move onto the real ρ axis at
ρ =

√
µ2 − m2. So when the coupling parameters are reduced the resonance state stabilizes

with energy equal to the mass of the boundary field, µ, as would be expected for a state which
arises from the particle state of the boundary field.

We will now consider the region of the parameter space where µ > m, λ > 0 and
β2 < λ(µ2 − m2), regions (d), (e) and (f ). Figure 6 illustrates the possible configurations
of the poles of the reflection matrix in these regions. In each case all three poles are
located in the lower complex half plane, and at least one pole is located on the imaginary
axis.

We know that there are no classical boundary bound state solutions in this region of
the parameter space, poles located on the negative imaginary axis do not represent boundary
bound states like those located on the positive imaginary axis. We also know that there is a
resonance peak in this region. Let us consider the behaviour of the poles in the weak coupling
limit8, one pole approaches ρ = 0 along the negative imaginary axis, this is the same weak
coupling behaviour displayed by the pole for the repulsive Robin boundary. Such poles do
not carry a physical interpretation as a valid state of the system. Boundaries whose reflection
matrix contains poles which have this weak coupling behaviour are repulsive to the particles
of the field. The remaining poles of the reflection matrix approach ρ = ±

√
µ2 − m2 in the

same way as described in the previous case. As before we can interpret one of these poles
as being the resonance observed in figure 4(B), even though it may be located at purely
imaginary values of ρ. Neither of the other poles of the reflection matrix have physical
interpretations.

The third case we will consider is for µ > m, λ > 0 and β2 > λ(µ2 − m2), regions
(b) and (c) of figure 2(A). Figure 7 shows the possible configurations of the poles of R(ρ) in
this region. Again we have a resonance as seen in figure 4(C) and we also have a classical
bound state solution, which corresponds to the pole on the positive imaginary axis as usual.
If we take the low coupling limit, ensuring β2 > λ(µ2 − m2) remains valid, we find that this
pole approaches ρ = 0 along the positive imaginary axis indicating that the boundary in this
region is attractive. We can consider how the state behaves if we were to reduce β2 and hold λ

constant (or increase λ and hold β constant). In this case the bound state pole passes through
ρ = 0 when β2 = λ(µ2 − m2). If β2 is decreased further we will pass into a region of the
parameter space where the boundary is repulsive. We know that this region does not have a

8 Where λ and β are reduced such that β2 < λ(µ2 − m2) is always true.
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p p
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Figure 7. The analytic structure of the reflection matrix of the dynamic boundary with Robin
potential for µ > m, λ > 0 and (A) β2 > λ(µ2 −m2) > J+, or β2 > J+ > λ(µ2 −m2) (region (b)),
(B) λ(µ2 − m2) < β2 < J+ (region (c)).

p

Figure 8. The analytic structure of the reflection matrix of the dynamic boundary with Robin
potential for µ < m, λ < 0 and β2 < λ(µ2 − m2) (region (i)).

bound state, thus we conclude that the state corresponding to the bound state pole evaporates
into a stationary bulk particle state as we make the transition between the two regions. The
remaining poles behave in the low coupling limit in the same manner as described in the
previous two cases and one is associated with the resonance state.

The fourth region we will consider is µ < m, λ < 0 and β2 < λ(µ2 − m2), region (i) of
figure 2(B), we know that in this region there are two classical boundary bound state solutions,
but there is no resonance state. Figure 8 shows the arrangement of poles of R(ρ) for this
region, as expected there are two poles on the positive imaginary axis corresponding to the
two bound states.

In the weak coupling limit one of the bound state poles approaches ρ = 0 along the positive
imaginary axis, indicating that this state is a boundary bound state in the sense of an attractive
Robin boundary bound state, it arises from the stationary bulk particle state as the coupling is
turned on. The presence of this state also indicates that the boundary is attractive in this region.
The other poles behave differently in the weak coupling limit, they move towards the purely
imaginary values, ρ = ±

√
µ2 − m2. The energy of these states becomes the same as the mass

of the boundary field, µ. Clearly these states arise from the particle state of the boundary
field in the same manner as the resonances do when µ > m. The pole on the positive
imaginary axis is interpreted as the stable boundary state arising from the boundary field,
the other pole lacks a physical interpretation.

The final parameter space regions we need to consider is when µ < m, and β2 >

λ(µ2 − m2), which includes everywhere that λ > 0, the regions (g), (h), ( j) and (k) of
figure 2(B). We know that in these regions there is a single classical boundary bound state and
no resonance state. Figure 9 shows the possible analytic structure of the reflection matrix in
these regions. In the weak coupling limit the pole on the positive imaginary axis moves to
ρ =

√
µ2 − m2, and carries the interpretation of being the state arising from the boundary

particle state. A second pole approaches ρ = 0 along the negative imaginary axis, indicating
that the boundary is repulsive.
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Figure 9. The analytic structure of the reflection matrix of the dynamic boundary with Robin
potential for µ < m and (A) β2 > J+, (regions (g) and ( j)), and (B) λ(µ2 − m2) < β2 < J+
(regions (h) and (k)).

(A) (B) (C)

Figure 10. Graphs of the cubic �3 + �(µ2 − m2) − β2 when (A) µ > m, (B) µ < m and
β2 > 2

27 (3(m2 − µ2))3/2 and (C) µ < m and β2 < 2
27 (3(m2 − µ2))3/2.

2.3. The λ = 0 special case

In this section we will discuss a special case of the system considered previously where
λ = 0 i.e. where the Robin boundary potential is removed leaving the field just coupled to the
oscillator at the boundary.

Figure 10 shows the possible real solutions of (26) for λ = 0 and for different values of
m, µ and β, clearly there is one and only one real positive solution for any allowed choice of
the parameters. The condition on the parameters of the theory required for the bound state
corresponding to this solution to be time oscillatory (and for the Hamiltonian to be bounded
below) (27) becomes

β2

µ2
� m. (47)

We note that when m = 0 equation (47) can only be satisfied by β = 0, i.e. a massless field
in the bulk can only be coupled to a boundary oscillator in the presence of a (repulsive) Robin
boundary potential.

In the quantized system the reflection matrix (43) simplifies to

R(p) = (p2 − µ2 + m2)p − iβ2

(p2 − µ2 + m2)p + iβ2
. (48)

The reflection matrix (48) has three poles, corresponding to the three complex roots of (26),
one of these poles always occurs at positive, purely imaginary, values of momentum (p = i�)

and corresponds to the classical bound state of the system, the features of which have been
discussed previously. The remaining two poles occur at values of momentum in the lower half
complex plane. To help interpret these poles we will initially assume that µ > m, in which
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p

Figure 11. The analytic structure of the reflection matrix of the dynamic boundary for
µ > m, λ = 0.

p p
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Figure 12. The analytic structure of the reflection matrix for the dynamic boundary for (A) µ < m

and β2 > 2
27 (3(m2 − µ2))3/2 and (B) µ < m and β2 < 2

27 (3(m2 − µ2))3/2.

case the poles are arranged as shown in figure 11. The dotted circle describes the locus of
points with the same modulus as the location of the bound state pole.

Figure 3(A) shows the shape of σtot for the dynamic boundary in the region of the parameter
space where µ > m and λ = 0. Figure 3(A) exhibits a resonance peak, the pole in the lower
right quadrant of figure 11 corresponds to the resonance state.

We now have a full description of two of the poles of R(p) in the region where µ > m.
The third pole of R(p) carries a similar interpretation to that just presented for the resonance.
If we were to continue figure 3(A) into negative values for ρ we would observe a second
resonance peak corresponding to the third pole of the reflection matrix. However, as mentioned
before this region of the reflection matrix, and thus the cross section is never probed.

Before we conclude our discussion of this region of the parameter space let us consider
the behaviour of the poles of the reflection matrix in the limit β → 0, where the oscillator
decouples from the field. From (48) we see that in this limit the pole corresponding to the
bound state approaches � = 0 from above. The energy of this state in the β → 0 limit is
equal to the mass of the bulk particle, m. This is the same behaviour as for the boundary
bound state of the attractive Robin boundary potential in the limit λ → 0 and indicates the
bound state arises from the stationary bulk particle state. The ability for a boundary to support
such a state indicates it is attractive to the particles of the field. In the limit β → 0 the poles
associated with the resonances stabilize and have energy equal to the mass of the particles of
the boundary oscillator, µ. This further supports the interpretation of the resonance particles
as particles of the boundary field.

Let us now consider the region of the parameter space where µ < m. Figure 12 shows
the arrangement of poles and nodes of the reflection matrix in this region.

The reflection cross section can be calculated and plotted as previously, however, no
additional features beyond background effects at low momentum are observed. To interpret
these poles let us observe their behaviour as β → 0. When µ < m we find that the bound
state pole, being the one located at p = i� on the positive imaginary axis, no longer goes to
� = 0 as the boundary coupling parameter is reduced. Instead its limiting energy is µ, the
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mass of the boundary particles. As in the previous case there is also a second pole which also
has an energy µ in the weak coupling limit, but as it is located on the negative imaginary axis
it carries no physical meaning. The final pole approaches � = 0 from below as β is reduced,
this is the same behaviour as the pole in the reflection matrix of the repulsive Robin boundary.
In both cases the pole does not correspond to any kind of bound state.

Clearly the spectrum of boundary states of the dynamic boundary is very different in
these two regions of the parameter space. For µ > m there is a resonance state corresponding
to the particles of the boundary field and a Robin-type boundary bound state arising from
the attraction of the bulk particles to the boundary. However, when µ is reduced past m the
Robin-type bound state vanishes, just as for the Robin boundary when λ is increased past zero.
The resonance state becomes a new, stable, boundary bound state, classically this state can
be thought of as the oscillator driving the field at the boundary but at a frequency too low to
allow the energy to be dissipated away. The absence of a Robin-type boundary bound state
suggests that the boundary oscillator in this region is repulsive to the particles of the field.

3. Conclusion

In this paper we considered the massive Klein–Gordon field coupled to a boundary oscillator,
with and without an additional Robin boundary potential. We showed that these systems
can be solved classically and that the classical solutions can be written as a superposition of
independent modes of oscillation. We observed classical boundary bound state solutions in
some regions of the parameter space, the requirement that these solutions be time oscillatory
is seen to be the same as the requirement that the Hamiltonian is bounded below. We develop
a condition relating the parameters of the theories which, when satisfied, ensures that bound
state is oscillatory and thus that the system is physical.

Writing the classical solutions as superposition of independent modes allows the system
to be quantized using canonical methods. The quantum reflection matrices for the
boundaries are found from the two point function of the field. We observed several interesting
features in the total cross section of the reflection process, including resonances and Ramsauer–
Townsend effects. Although resonances associated with boundaries have previously been
observed [1, 14, 19, 20] they have only previously been associated with boundaries containing
additional degrees of freedom in [14]. Ramsauer–Townsend effects have not previously been
observed in boundary field theories.

Quantum boundary bound states were observed in several regions of the parameter space.
Some of these bound states were seen to arise from the states of the boundary oscillator, this
behaviour has not previously been observed. Other boundary bound states arise in a similar
manner to those of the attractive Robin boundary.

Similar systems to the ones described in this paper have previously been investigated.
The coupling of one or more harmonic oscillators at fixed points in the bulk of a (1+1)-
dimensional, massless, classical Klein–Gordon field is discussed in [10], and the coupling of
a harmonic oscillator to a massless scalar field in a spherical reflecting cavity is discussed
in [11, 12] where it is used to model the behaviour of an excited atom in a cavity. In [14]
the massless scalar field coupled to a boundary oscillator is studied as a model of brane–bulk
interaction in a braneworld universe. There also exist several papers dealing with quantum
mechanical systems linked the some dissipative medium, based on the approach of [25] where
the dissapative medium is modelled by coupling the system to an infinite number of harmonic
oscillators. This modelling of the dispersive medium should be equivalent to the coupling
of the system to the Klein–Gordon field, which contains an infinite number of harmonic
oscillators, however, a correspondence between the results of this paper and those from
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dissapative quantum mechanics has yet to be found. For a recent treatment of the harmonic
oscillator using the methods of [25] see [26].

It seems that similar results to those presented in this paper should be obtainable for fields
bounded by arbitrary linear mechanical systems. Of particular interest would be the existence
and energy of boundary bound states and resonances for such systems. Other possibly
interesting extensions include coupling two or more non-interacting bulk fields through a
boundary or reformulating the present system to describe a point interaction on the whole line,
or in a volume. In the latter case we would expect to make contact with the results of the
earlier papers mentioned above.
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